cleanup structure

main
oscar 11 months ago
parent 96ebf0daac
commit 633251c6d2

@ -1,93 +0,0 @@
from funcs import get_files
from PIL import Image
import imagehash
import config
import os
def generate_image_phash(filepath, hash_size=8):
try:
# Open the image using PIL
pil_image = Image.open(filepath)
# Compute pHash using the imagehash library
phash = imagehash.phash(pil_image, hash_size=hash_size)
return phash
except Exception as e:
print(f"Error processing image {filepath}: {e}")
return None
def are_phashes_duplicates(phash1, phash2, threshold=5):
try:
# Compute the Hamming distance between the pHashes
distance = phash1 - phash2
return distance <= threshold
except TypeError as e:
print(f"Error comparing pHashes: {e}")
return False
def get_media_by_phash(phash, username, existing_medias, threshold=5):
for media in existing_medias:
existing_phash_str = media[1]
existing_username = media[2]
# Convert stored pHash string to ImageHash object
existing_phash = imagehash.hex_to_hash(existing_phash_str)
# Check if the current pHash is a duplicate
if are_phashes_duplicates(phash, existing_phash, threshold=threshold):
return media
return None
def get_media_by_hash(hash, existing_medias):
for media in existing_medias:
existing_hash = media[1]
if hash == existing_hash:
return media
return None
def get_media_by_id(media_id, existing_medias):
for media in existing_medias:
existing_media_id = media[1]
if media_id == existing_media_id:
return media
return None
def get_data_by_filename(filename, data):
for item in data:
if filename in item['filepath']:
return item
return None
directory = 'check_if_exists' # Directory containing user images
# Database connection
db, cursor = config.gen_connection()
# Fetch existing media with pHashes (assuming media are images, adjust media_type if needed)
cursor.execute("SELECT id, phash, username FROM media WHERE media_type = %s AND phash IS NOT NULL", ['image'])
existing_medias = cursor.fetchall()
usernames = os.listdir(directory)
for username in usernames:
files = get_files(os.path.join(directory, username))
for filepath in files:
image_filename = os.path.basename(filepath)
print(f'Processing {image_filename}...')
# Generate pHash for the image
phash = generate_image_phash(filepath, hash_size=8)
if phash is None:
continue # Skip this image if there's an issue
phash_str = str(phash)
# Check if the image is a duplicate of any in the database
duplicate_media = get_media_by_phash(phash, username, existing_medias, threshold=5)
if duplicate_media:
print(f'Duplicate found: https://altpins.com/pin/{duplicate_media[0]}')
print(f'Duplicate image path: {filepath}')
newpath = os.path.join('duplicates', duplicate_media[2], image_filename)
os.makedirs(os.path.dirname(newpath), exist_ok=True)
os.rename(filepath, newpath)
print(f'Moved {image_filename} to duplicates/')

@ -1,68 +0,0 @@
from funcs import generate_phash # Assuming this function computes the pHash and returns a string
import imagehash
import os
def get_files(directory):
# Recursively get all files in the directory
file_list = []
for root, dirs, files in os.walk(directory):
for filename in files:
file_list.append(os.path.join(root, filename))
return file_list
# Function to compute pHashes for all images in a directory
def compute_phashes(image_paths):
phash_dict = {}
for image_path in image_paths:
try:
# Compute pHash and get it as a string
phash_str = generate_phash(image_path)
# Convert the hash string to an ImageHash object
phash = imagehash.hex_to_hash(phash_str)
phash_dict[image_path] = phash
except Exception as e:
print(f"Error processing {image_path}: {e}")
return phash_dict
# Get all image files from 'ready_to_upload' and 'sorted' directories
ready_images = get_files('ready_to_upload')
ready_images = [image for image in ready_images if not image.lower().endswith('.mp4')]
sorted_images = get_files('sorted')
sorted_images = [image for image in sorted_images if not image.lower().endswith('.mp4')]
# Compute pHashes for images in 'ready_to_upload'
print("Computing pHashes for 'ready_to_upload' images...")
ready_image_phashes = compute_phashes(ready_images)
# Compute pHashes for images in 'sorted'
print("Computing pHashes for 'sorted' images...")
sorted_image_phashes = compute_phashes(sorted_images)
# Prepare the 'already_processed' directory
os.makedirs('already_processed', exist_ok=True)
# Set a Hamming distance threshold for considering images as duplicates
threshold = 5 # Adjust this value as needed
# Find and move duplicates
for sorted_image, sorted_phash in sorted_image_phashes.items():
duplicate_found = False
for ready_image, ready_phash in ready_image_phashes.items():
# Compute Hamming distance between the two pHashes
try:
distance = sorted_phash - ready_phash
except TypeError as e:
print(f"Error comparing hashes for {sorted_image} and {ready_image}: {e}")
continue
if distance <= threshold:
# Duplicate found
newpath = sorted_image.replace('sorted', 'already_processed')
os.makedirs(os.path.dirname(newpath), exist_ok=True)
print(f"Moving {sorted_image} (duplicate of {ready_image}) to 'already_processed'")
os.rename(sorted_image, newpath)
duplicate_found = True
break # Exit the loop since a duplicate is found
if not duplicate_found:
print(f"No duplicate found for {sorted_image}")

@ -1,59 +0,0 @@
import config
# Function to find the closest perceptual hash (phash) match
def find_almost_identical_phash(phash, usernames, max_distance=1):
"""
Find a username whose phash is nearly identical to the given phash.
:param phash: The phash to compare (e.g., from the 'unknown' image).
:param usernames: List of tuples containing (username, phash).
:param max_distance: Maximum Hamming distance to consider as "identical".
:return: The matching username and phash, or None if no match is found.
"""
for username in usernames:
dist = hamming_distance(phash, username[1])
if dist <= max_distance:
return username
return None
def hamming_distance(phash1, phash2):
"""
Calculate the Hamming distance between two binary strings.
"""
if len(phash1) != len(phash2):
raise ValueError("Hashes must be of the same length")
return sum(c1 != c2 for c1, c2 in zip(phash1, phash2))
# Establish database connection
db, cursor = config.gen_connection()
# Fetch all images with an 'unknown' username
cursor.execute("SELECT id, username, phash FROM media WHERE username = 'unknown'")
rows = cursor.fetchall()
# Fetch all non-unknown usernames and their associated phash
cursor.execute("SELECT username, phash FROM media WHERE username != 'unknown' AND phash IS NOT NULL AND status = 'public'")
usernames = cursor.fetchall()
# Ensure there are valid usernames to compare against
if not usernames:
print("No known usernames found in the database.")
exit()
# Adjusted section in your script
for row in rows:
id = row[0]
phash = row[2]
# Find a nearly identical phash match
closest = find_almost_identical_phash(phash, usernames, max_distance=2)
if closest:
print(f"Found match for image {id}: {closest[0]} with phash {closest[1]}")
cursor.execute(
"UPDATE media SET username = %s WHERE id = %s",
(closest[0], id),
)
db.commit()
else:
print(f"No nearly identical match found for image {id}.")

@ -1,90 +0,0 @@
from funcs import get_files # Assuming this is defined elsewhere
from PIL import Image
import imagehash
import config
import os
def generate_image_phash(filepath, hash_size=8):
try:
# Open the image using PIL
pil_image = Image.open(filepath)
# Compute pHash using the imagehash library
phash = imagehash.phash(pil_image, hash_size=hash_size)
return phash
except Exception as e:
print(f"Error processing image {filepath}: {e}")
return None
def are_phashes_duplicates(phash1, phash2, threshold=5):
try:
# Compute the Hamming distance between the pHashes
distance = phash1 - phash2
return distance <= threshold
except TypeError as e:
print(f"Error comparing pHashes: {e}")
return False
def get_media_by_phash(phash, username, existing_medias, threshold=5):
for media in existing_medias:
existing_phash_str = media[1]
# existing_username = media[2]
# if existing_username != username:
# continue # Only compare with the same user's media
# Convert stored pHash string to ImageHash object
existing_phash = imagehash.hex_to_hash(existing_phash_str)
# Check if the current pHash is a duplicate
if are_phashes_duplicates(phash, existing_phash, threshold=threshold):
return media
return None
# Database connection
db, cursor = config.gen_connection()
directory = 'check_if_exists' # Directory containing user images
# Fetch existing media with pHashes (assuming media are images, adjust media_type if needed)
cursor.execute("SELECT id, phash, username FROM media WHERE media_type = %s AND phash IS NOT NULL", ['image'])
existing_medias = cursor.fetchall()
existing_phashes = [media[1] for media in existing_medias]
# Go through the directory folder where each subfolder is a username
users = os.listdir(directory)
for username in users:
user_images_path = os.path.join(directory, username)
if not os.path.isdir(user_images_path):
continue # Skip non-directory files
# Get all images for the current user
images = get_files(user_images_path) # Assuming this gets all image files
for filepath in images:
image_filename = os.path.basename(filepath)
print(f'Processing {image_filename}...')
# Generate pHash for the image
phash = generate_image_phash(filepath, hash_size=8)
if phash is None:
continue # Skip this image if there's an issue
phash_str = str(phash)
if phash_str not in existing_phashes:
print(f'No duplicate found for {image_filename}')
continue
# Check if the image is a duplicate of any in the database
duplicate_media = get_media_by_phash(phash, username, existing_medias, threshold=5)
if duplicate_media:
found_username = duplicate_media[2]
print(f'Duplicate found: https://altpins.com/pin/{duplicate_media[0]}')
print(f'Duplicate image path: {filepath}')
newpath = os.path.join('duplicates', found_username, image_filename)
os.makedirs(os.path.dirname(newpath), exist_ok=True)
os.rename(filepath, newpath)
print(f'Moved {image_filename} to duplicates/')

@ -1,87 +0,0 @@
from PIL import Image
import imagehash
import config
import cv2
import os
def generate_thumbnail_phash(filepath, hash_size=8): # Set hash_size to 8
cap = cv2.VideoCapture(filepath)
ret, frame = cap.read()
cap.release()
if not ret:
print(f"Error reading frame from {filepath}")
return None
# Resize frame to a standard size
standard_size = (320, 240)
resized_frame = cv2.resize(frame, standard_size, interpolation=cv2.INTER_AREA)
# Convert OpenCV image (BGR) to PIL Image (RGB)
image_rgb = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image_rgb)
# Compute pHash
phash = imagehash.phash(pil_image, hash_size=hash_size)
return phash
def are_phashes_duplicates(phash1, phash2, threshold=5):
# Compute Hamming distance between the pHashes
try:
distance = phash1 - phash2
except TypeError as e:
print(f"Error comparing pHashes: {e}")
return False
return distance <= threshold
def get_media_by_phash(phash, username, existing_medias, threshold=5):
for media in existing_medias:
existing_phash_str = media[1]
existing_username = media[2]
if existing_username != username:
continue
# Convert stored phash string to ImageHash object
existing_phash = imagehash.hex_to_hash(existing_phash_str)
if are_phashes_duplicates(phash, existing_phash, threshold=threshold):
return media
return None
# Database connection
db, cursor = config.gen_connection()
# Directory containing user videos
directory = 'check_if_exists'
# Fetch existing videos with pHashes
cursor.execute("SELECT id, phash, username FROM media WHERE media_type = %s AND phash IS NOT NULL", ['video'])
existing_medias = cursor.fetchall()
users = os.listdir(directory) # Assuming 'check_if_exists' contains user videos
for username in users:
user_videos_path = os.path.join(directory, username)
if not os.path.isdir(user_videos_path):
continue
videos = [video for video in os.listdir(user_videos_path) if video.endswith(('.mp4', '.avi', '.mov'))]
for video in videos:
print(f'Processing {video}...')
filepath = os.path.join(user_videos_path, video)
phash = generate_thumbnail_phash(filepath, hash_size=8) # Use hash_size=8
if phash is None:
continue
phash_str = str(phash)
duplicate_media = get_media_by_phash(phash, username, existing_medias, threshold=5)
if duplicate_media:
print(f'Duplicate url found: https://altpins.com/pin/{duplicate_media[0]}')
print(f'Duplicate video path: {filepath}')
newpath = filepath.replace(directory, 'duplicates')
os.makedirs(os.path.dirname(newpath), exist_ok=True)
os.rename(filepath, newpath)
print(f'Moved {video} to duplicates/')

@ -1,58 +0,0 @@
from funcs import generate_phash
import os
def find_duplicates(source_dir, target_dir, extensions, max_distance):
"""Remove duplicates in target_dir that are found in source_dir based on Hamming distance."""
source_files = {}
target_files = {}
# Helper function to filter files by extension
def filter_files(files):
return [f for f in files if os.path.splitext(f)[1].lower() in extensions]
# Build hash map of source directory
for dirpath, _, filenames in os.walk(source_dir):
for filename in filter_files(filenames):
filepath = os.path.join(dirpath, filename)
filehash = generate_phash(filepath, str=False)
if filehash:
source_files[filehash] = filepath
# Build hash map of target directory and compare
for dirpath, _, filenames in os.walk(target_dir):
for filename in filter_files(filenames):
filepath = os.path.join(dirpath, filename)
filehash = generate_phash(filepath, str=False)
if not filehash:
continue
# Check if this file is similar to any of the source files
is_duplicate = False
for source_hash in source_files.keys():
distance = filehash - source_hash # Hamming distance
if distance <= max_distance:
is_duplicate = True
break # Found a duplicate
if is_duplicate:
newpath = os.path.join('duplicates', filename)
os.makedirs(os.path.dirname(newpath), exist_ok=True)
os.rename(filepath, newpath)
print(f"Moved duplicate: {filepath} to duplicates/ (distance: {distance})")
else:
target_files[filehash] = filepath
if __name__ == '__main__':
# Paths to the directories
source_dir = 'D:/Crawlers/media/Coomer/sadierayxo'
target_dir = 'sorted/sadierayxo'
# List of accepted extensions
extensions = {'.png', '.jpg', '.jpeg', '.webp', '.gif'}
# Maximum Hamming distance to consider as duplicates
MAX_DISTANCE = 5 # Adjust this threshold as needed
find_duplicates(source_dir, target_dir, extensions, MAX_DISTANCE)
print("Duplicate removal process completed.")

@ -1,112 +0,0 @@
from PIL import Image
import imagehash
import config
import funcs
import cv2
import os
directory = "old_snapchats"
duplicate_dir = 'dupelicate_snaps'
def generate_video_phash(filepath):
try:
cap = cv2.VideoCapture(filepath)
ret, frame = cap.read()
cap.release()
if not ret:
return None
phash = imagehash.phash(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
return str(phash)
except:
return None
def get_snapchat_files():
stories = funcs.get_files(directory)
stories = [get_media_data(filepath) for filepath in stories]
stories = [story for story in stories if story]
return stories
def get_media_data(filepath):
filename = os.path.basename(filepath)
parts = filename.split('~')
if len(parts) < 3:
return False
username = parts[0]
timestamp = parts[1]
snap_id = parts[2]
snap_id = os.path.splitext(snap_id)[0]
# data = {'username': username, 'timestamp': timestamp, 'filepath': filepath, 'snap_id': snap_id, 'original_snap_id': None}
data = {'username': username, 'timestamp': timestamp, 'filepath': filepath, 'snap_id': None, 'original_snap_id': snap_id}
return data
def process_snap_ids(filenames):
snap_ids = []
for filename in filenames:
snap_id = filename.split('~')[2]
snap_id = os.path.splitext(snap_id)[0]
if snap_id not in snap_ids:
snap_ids.append(snap_id)
return snap_ids
def find_duplicate_snap(existing_snaps, current_snap):
filepath = current_snap['filepath']
original_snap_id = current_snap['original_snap_id']
username = current_snap['username']
snap_hash = funcs.calculate_file_hash(current_snap['filepath'])
if filepath.endswith('.mp4'):
phash = generate_video_phash(current_snap['filepath'])
elif filepath.endswith('.jpg'):
phash = funcs.generate_phash(current_snap['filepath'])
for snap in existing_snaps:
if username != snap[2]:
continue
if original_snap_id in snap[1]:
return snap
if original_snap_id == snap[5]:
return snap
if snap_hash == snap[3]:
return snap
if phash == snap[4]:
return snap
return False
if __name__ == '__main__':
print('Starting snappy...')
db, cursor = config.gen_connection()
obj_storage = config.get_storage()
stories_from_files = get_snapchat_files()
# this script will check if there are any duplicates in old_snapchats folder in the database in table media where platform = 'snapchat'
cursor.execute("SELECT id, filename, username, hash, phash, original_snap_id FROM media WHERE filename IS NOT NULL AND platform = 'snapchat'")
existing_medias = cursor.fetchall()
snap_files = get_snapchat_files()
os.makedirs(duplicate_dir, exist_ok=True)
for story in snap_files:
print(f"Processing {story['username']}...")
snap_id = story['snap_id']
original_snap_id = story['original_snap_id']
username = story['username']
# check if the snap_id is already in the database
existing_snap = find_duplicate_snap(existing_medias, story)
if existing_snap:
print(f"Snap {original_snap_id} already exists in the database.")
new_filename = os.path.basename(story['filepath'])
new_filepath = os.path.join(duplicate_dir, new_filename)
os.rename(story['filepath'], new_filepath)
print("Processing completed.")

@ -5,12 +5,22 @@ import config
import cv2
import os
directory = 'ready_for_upload/instagram'
def UploadMedia(username, user_id, filepath):
media_directory = "media/ready_for_upload"
platform = "instagram"
working_directory = os.path.join(media_directory, platform)
def UploadMedia(media):
username = media['username']
user_id = media['user_id']
filepath = media['filepath']
platform = media['platform']
media_id = media['media_id']
thumbnail_url = None
phash = None
platform = 'Instagram'
filename = os.path.basename(filepath)
file_extension = os.path.splitext(filename)[1].lower()
@ -54,8 +64,8 @@ def UploadMedia(username, user_id, filepath):
obj_storage.PutFile(filepath, server_path) # slow as fuck
post_type = 'story' if post_type == 'stories' else 'post'
query = "INSERT IGNORE INTO media (username, media_type, media_url, width, height, post_type, date, user_id, hash, filename, duration, thumbnail, phash, platform) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
values = (username, media_type, file_url, width, height, post_type, post_date, user_id, file_hash, filename, duration, thumbnail_url, phash, platform)
query = "INSERT IGNORE INTO media (username, media_type, media_url, width, height, post_type, date, user_id, hash, filename, duration, thumbnail, phash, platform, media_id) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
values = (username, media_type, file_url, width, height, post_type, post_date, user_id, file_hash, filename, duration, thumbnail_url, phash, platform, media_id)
newCursor.execute(query, values) # slower
newDB.commit()
@ -82,19 +92,34 @@ def get_user_id(username):
def get_media(folder_path):
medias = []
user_folders = os.listdir(folder_path)
for user_folder in user_folders:
user_folder_path = os.path.join(folder_path, user_folder)
if not os.path.isdir(user_folder_path):
continue
files = os.listdir(user_folder_path)
for filename in files:
filepath = os.path.join(folder_path, user_folder, filename)
# skip file if its hidden
if filename.startswith('.'):
continue
try:
media_id = filename.split('.')[0]
media_id = int(media_id)
except:
media_id = None
media = {
'username': user_folder,
'filepath': filepath,
'user_id': get_user_id(user_folder)
'user_id': get_user_id(user_folder),
'media_id': media_id,
'platform': platform
}
medias.append(media)
@ -105,8 +130,7 @@ def dump_instagram(folder_path):
medias = get_media(folder_path)
for media in medias:
UploadMedia(media['username'], media['user_id'], media['filepath'])
UploadMedia(media)
if __name__ == '__main__':
print('Starting processing...')
@ -118,6 +142,6 @@ if __name__ == '__main__':
newCursor.execute("SELECT DISTINCT username, user_id FROM media WHERE user_id IS NOT NULL")
existing_users = {user[0].lower(): user[1].lower() for user in newCursor.fetchall()}
dump_instagram(directory)
dump_instagram(working_directory)
print("Processing completed.")
Loading…
Cancel
Save